Explaining compound generalization in associative and causal learning through rational principles of dimensional generalization.
نویسندگان
چکیده
منابع مشابه
Explaining compound generalization in associative and causal learning through rational principles of dimensional generalization.
How do we apply learning from one situation to a similar, but not identical, situation? The principles governing the extent to which animals and humans generalize what they have learned about certain stimuli to novel compounds containing those stimuli vary depending on a number of factors. Perhaps the best studied among these factors is the type of stimuli used to generate compounds. One promin...
متن کاملStimulus generalization in two associative learning processes.
Recent studies involving nonlinear discrimination problems suggest that stimuli in human associative learning are represented configurally with narrow generalization, such that presentation of stimuli that are even slightly dissimilar to stored configurations weakly activate these configurations. The authors note that another well-known set of findings in human associative learning, cue-interac...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Causal-Based Property Generalization
A central question in cognitive research concerns how new properties are generalized to categories. This article introduces a model of how generalizations involve a process of causal inference in which people estimate the likely presence of the new property in individual category exemplars and then the prevalence of the property among all category members. Evidence in favor of this causal-based...
متن کاملPrinciples of Generalization for Learning Sequential Structure in Language
How do learners discover patterns in the sequential structure of their language? Infants and adults have surprising abilities to learn structure in simple artificial languages, but the mechanisms are unknown. Here we introduce a rule-based Bayesian model incorporating two principles: minimal generalization and representational parsimony. We apply our model to tasks in artificial language learni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Psychological Review
سال: 2014
ISSN: 1939-1471,0033-295X
DOI: 10.1037/a0037018